Skip to content

Ambient Occlusion

Video Lecture

Section Video Links
Ambient Occlusion Ambient Occlusion Ambient Occlusion

Description

We will implement Screen Space Ambient Occlusion (AO).

This will make areas darker based on the surrounding objects.

We can use AO independently of shadows.

Instead of casting a shadow ray, AO checks how much nearby geometry is blocking light.

It will sample small distances around the object, and if any are blocked, then the position is darkened.

Areas near the ground, near other objects, or inside corners will appear darker due to AO.

Surfaces will feel more realistic as occluded regions will receive less light.

Working Example

<>

Start Script

./src/main.ts

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
import './style.css'
import * as THREE from 'three/webgpu'
import {
  positionLocal,
  Fn,
  If,
  Loop,
  Break,
  float,
  vec2,
  vec3,
  min,
  max,
  length,
  normalize,
  dot,
  time,
  sin,
  cos,
  abs,
  negate,
  uniform,
  pow,
  reflect,
  clamp,
  mod,
  exp,
  mix,
  smoothstep,
} from 'three/tsl'
import { OrbitControls } from 'three/addons/controls/OrbitControls.js'
import { GUI } from 'three/addons/libs/lil-gui.module.min.js'

const scene = new THREE.Scene()

const camera = new THREE.PerspectiveCamera(
  53,
  window.innerWidth / window.innerHeight,
  0.1,
  1000
)
camera.position.set(5, 1.5, 4)

const renderer = new THREE.WebGPURenderer()
renderer.setSize(window.innerWidth, window.innerHeight)
document.body.appendChild(renderer.domElement)
renderer.setAnimationLoop(animate)
renderer.setPixelRatio(0.25) // start low for slower cards

window.addEventListener('resize', function () {
  camera.aspect = window.innerWidth / window.innerHeight
  camera.updateProjectionMatrix()
  renderer.setSize(window.innerWidth, window.innerHeight)
})

const controls = new OrbitControls(camera, renderer.domElement)
controls.enableDamping = true
controls.target.y = 1
controls.autoRotateSpeed = -0.5
//controls.autoRotate = true
controls.maxPolarAngle = Math.PI / 1.9

const options = {
  zoom: 0,
  maxSteps: 256,
  surfaceDistance: 0.0001,
  cameraNear: 0.0001,
  cameraFar: 128.0,
  shadowSoftness: 10,
  shadowIntensity: 0.1,
  shadowMaxSteps: 256,
  shadowFar: 128,
  maxReflections: 1,
  reflectivity: 0.5,
  // samples: 5,
  // spread: 0.5,
  objectHeight: 1,
}

const camPos = uniform(new THREE.Vector3())
const camTarget = uniform(new THREE.Vector3())
const zoom = uniform(options.zoom)
const maxSteps = uniform(options.maxSteps)
const surfaceDistance = uniform(options.surfaceDistance)
const cameraNear = uniform(options.cameraNear)
const cameraFar = uniform(options.cameraFar)
const shadowSoftness = uniform(options.shadowSoftness)
const shadowIntensity = uniform(options.shadowIntensity)
const shadowMaxSteps = uniform(options.shadowMaxSteps)
const shadowFar = uniform(options.shadowFar)
const maxReflections = uniform(options.maxReflections)
const reflectivity = uniform(options.reflectivity)
// const samples = uniform(options.samples)
// const spread = uniform(options.spread)
const objectHeight = uniform(options.objectHeight)

// @ts-ignore
const Floor = Fn(([position]) => {
  const floor = position.y

  const radius = 10.0
  const circle = length(position.xz).sub(radius)

  return max(floor, circle)
})

// @ts-ignore
const Sphere = Fn(([position, radius]) => {
  return length(position).sub(radius)
})

// @ts-ignore
const Box = Fn(([position, dimensions]) => {
  const distance = abs(position).sub(dimensions)
  return length(max(distance, 0.0)).add(
    min(max(distance.x, max(distance.y, distance.z)), 0.0)
  )
})

// @ts-ignore
const IntersectedSphereBox = Fn(([position, radius]) => {
  const circle = length(position).sub(radius.add(0.33))
  const box = Box(position, vec3(radius))
  return max(circle, box)
})

// @ts-ignore
const SubtractedSphereBox = Fn(([position, radius]) => {
  const circle = length(position).sub(radius.add(0.33))
  const box = Box(position, vec3(radius))
  return max(negate(circle), box)
})

// @ts-ignore
const sdfScene = Fn(([position]) => {
  const floor = Floor(position)

  const sphere = Sphere(position.sub(vec3(1.5, objectHeight, 1.5)), 1)

  const box = Box(position.sub(vec3(1.5, objectHeight, -1.5)), vec3(1))

  const intersectedSphereBox = IntersectedSphereBox(
    position.sub(vec3(-1.5, objectHeight, -1.5)),
    1
  )
  const subtractedSphereBox = SubtractedSphereBox(
    position.sub(vec3(-1.5, objectHeight, 1.5)),
    1
  )

  const distance = vec2(floor, 0).toVar()
  If(distance.x.greaterThan(sphere), () => {
    distance.assign(vec2(sphere, 1))
  })
  If(distance.x.greaterThan(box), () => {
    distance.assign(vec2(box, 2))
  })
  If(distance.x.greaterThan(intersectedSphereBox), () => {
    distance.assign(vec2(intersectedSphereBox, 3))
  })
  If(distance.x.greaterThan(subtractedSphereBox), () => {
    distance.assign(vec2(subtractedSphereBox, 4))
  })

  return distance
})

// @ts-ignore
const getNormal = Fn(([position, distance]) => {
  const offset = vec2(0.0001, 0)

  return normalize(
    distance.sub(
      vec3(
        sdfScene(position.sub(offset.xyy)).x,
        sdfScene(position.sub(offset.yxy)).x,
        sdfScene(position.sub(offset.yyx)).x
      )
    )
  )
})

// @ts-ignore
const shadowMarcher = Fn(([rayOrigin, rayDirection]) => {
  const shadow = float(1).toVar()
  const accumulatedDistance = float(cameraNear).toVar()

  // @ts-ignore
  Loop({ start: 0, end: shadowMaxSteps }, () => {
    const distance = sdfScene(
      rayOrigin.add(rayDirection.mul(accumulatedDistance))
    )

    If(abs(distance.x).lessThan(surfaceDistance), () => {
      shadow.assign(0)
      Break()
    }).Else(() => {
      shadow.assign(
        min(shadow, shadowSoftness.mul(distance.x).div(accumulatedDistance))
      ) //softens shadow
      accumulatedDistance.addAssign(clamp(distance.x, surfaceDistance, 0.025)) // works better for soft shadows
      //accumulatedDistance.addAssign(distance) // works better for hard shadows

      If(accumulatedDistance.greaterThan(shadowFar), () => {
        Break()
      })
    })
  })

  return shadow
})

// @ts-ignore
const atmosphericScattering = Fn(([position, direction]) => {
  const topColour = vec3(0.1, 0.2, 0.5) // Deep blue (upper sky)
  const midColour = vec3(1.0, 0.4, 0.2) // Orange-red (mid sky)
  const bottomColour = vec3(0.9, 0.6, 0.3) // Yellow near horizon

  const t = clamp(position.y.mul(0.5).add(0.5), 0.0, 1.0) // Horizon-based gradient
  const skyColour = mix(mix(bottomColour, midColour, t), vec3(0), t.mul(1.25))

  const radius = 0.01
  const distance = length(position.sub(normalize(direction)))
  const sun = exp(distance.negate().mul(distance.div(radius)))
  skyColour.addAssign(vec3(1.0, 0.8, 0.5).mul(sun))

  // Mie scattering (orange glow near the sun)
  const mie = exp(distance.mul(3.0).pow(2.0).negate()).mul(0.5)
  const mieColor = vec3(midColour).mul(mie)
  skyColour.addAssign(mieColor.mul(1.5))

  // Rayleigh scattering (blue tint in the upper sky)
  const rayleigh = exp(position.y.mul(2.5)).mul(0.3)
  const rayleighColor = rayleigh.mul(topColour)
  skyColour.addAssign(rayleighColor)

  // Night Transition
  const nightFactor = smoothstep(-0.1, 0.1, direction.y)
  skyColour.mulAssign(nightFactor)

  return skyColour
})

// // @ts-ignore
// const computeAO = Fn(([position, normal]) => {
//   const occlusion = float(0.0).toVar()

//   Loop({ start: 0, end: samples, condition: '<=' }, ({ i }) => {
//     const spacer = float(i).div(samples)
//     const samplePos = position.add(normal.mul(spacer.mul(spread)))
//     const distance = sdfScene(samplePos)
//     occlusion.addAssign(smoothstep(0.0, 0.1, distance))
//   })
//   return clamp(occlusion.div(samples), 0, 1.0)
//   //return clamp(occlusion.div(samples).oneMinus(), 0, 1.0)
// })

// @ts-ignore
const main = Fn(() => {
  const p = positionLocal

  const rayOrigin = camPos.toVar()
  const lookAt = camTarget

  const forward = normalize(lookAt.sub(rayOrigin))
  const rayDirection = normalize(p.add(forward.mul(zoom))).toVar()

  //const t = time.div(5)
  const lightPosition = vec3(-25, 7.5, -25)
  //const lightPosition = vec3(-25, sin(t).mul(10).add(7), -25)
  //const lightPosition = vec3(sin(t).mul(25), 2, cos(t).mul(25))
  //const lightPosition = vec3(sin(t).mul(25), sin(t).mul(10).add(8), cos(t).mul(25))

  const skyColour = atmosphericScattering(p, normalize(lightPosition))
  const finalColour = skyColour.toVar()
  const reflectivityFactor = float(1.0).toVar()

  Loop({ start: 0, end: maxReflections, condition: '<=' }, () => {
    const accumulatedDistance = float(cameraNear).toVar()
    const distance = vec2(0).toVar()
    const position = vec3(0).toVar()

    Loop({ start: 0, end: maxSteps, condition: '<' }, () => {
      position.assign(rayOrigin.add(rayDirection.mul(accumulatedDistance)))
      distance.assign(sdfScene(position))

      If(
        abs(distance.x)
          .lessThan(surfaceDistance)
          .or(accumulatedDistance.greaterThan(cameraFar)),
        () => {
          Break()
        }
      )

      accumulatedDistance.addAssign(distance.x)
    })

    If(accumulatedDistance.lessThan(cameraFar), () => {
      const lightDirection = normalize(lightPosition.sub(position))

      const normal = getNormal(position, distance.x)

      const diffuse = clamp(dot(normal, lightDirection), 0.75, 1).toVar()

      const diffuseColour = atmosphericScattering(
        reflect(rayDirection, normal),
        normalize(lightPosition)
      ).toVar()

      const shadow = shadowMarcher(
        position.add(normal.mul(surfaceDistance)),
        vec3(lightDirection)
      )
      shadow.assign(max(shadowIntensity, shadow))
      diffuse.mulAssign(shadow)

      // const ao = computeAO(position, normal)
      // diffuse.mulAssign(ao)

      finalColour.assign(
        mix(finalColour, diffuseColour.mul(diffuse), reflectivityFactor)
      )

      rayOrigin.assign(position.add(normal.mul(surfaceDistance)))
      rayDirection.assign(reflect(rayDirection, normal))
      reflectivityFactor.mulAssign(reflectivity)
    })
  })

  return finalColour
})

scene.backgroundNode = main()

const gui = new GUI()

const raymarchFolder = gui.addFolder('Raymarching')
raymarchFolder
  .add(options, 'zoom', 0, 10, 0.001)
  .name('Zoom')
  .onChange((v) => {
    zoom.value = v
  })
raymarchFolder
  .add(options, 'maxSteps', 1, 512, 1)
  .name('Raymarch Max Steps')
  .onChange((v) => {
    maxSteps.value = v
  })
raymarchFolder
  .add(options, 'surfaceDistance', 0, 0.001, 0.0001)
  .name('Surface Distance')
  .onChange((v) => {
    surfaceDistance.value = v
  })
raymarchFolder
  .add(options, 'cameraNear', 0.0001, 10, 0.1)
  .name('Camera Near')
  .onChange((v) => {
    cameraNear.value = v
  })
raymarchFolder
  .add(options, 'cameraFar', 1, 512, 0.1)
  .name('Camera Far')
  .onChange((v) => {
    cameraFar.value = v
  })
raymarchFolder.close()

// const lightingFolder = gui.addFolder('Lighting')
// lightingFolder
//     .add(options, 'shininess', 0, 100, 0.1)
//     .name('Shininess')
//     .onChange((v) => {
//         shininess.value = v
//     })

// lightingFolder
//     .add(options, 'specularStrength', 0, 1, 0.01)
//     .name('SpecularStrength')
//     .onChange((v) => {
//         specularStrength.value = v
//     })
// lightingFolder.close()

const shadowFolder = gui.addFolder('Shadows')
shadowFolder
  .add(options, 'shadowSoftness', 0, 100, 0.01)
  .name('Shadow Softness')
  .onChange((v) => {
    shadowSoftness.value = v
  })
shadowFolder
  .add(options, 'shadowIntensity', 0, 1, 0.01)
  .name('Shadow Intensity')
  .onChange((v) => {
    shadowIntensity.value = v
  })
shadowFolder
  .add(options, 'shadowMaxSteps', 1, 512, 1)
  .name('Shadow Max Steps')
  .onChange((v) => {
    shadowMaxSteps.value = v
  })
shadowFolder
  .add(options, 'shadowFar', 1, 512, 0.1)
  .name('Shadow Far')
  .onChange((v) => {
    shadowFar.value = v
  })
shadowFolder.close()

const reflectionFolder = gui.addFolder('Reflections')
reflectionFolder
  .add(options, 'maxReflections', 0, 3, 1)
  .name('Max Reflections')
  .onChange((v) => {
    maxReflections.value = v
  })
reflectionFolder
  .add(options, 'reflectivity', 0, 1, 0.1)
  .name('Reflectivity')
  .onChange((v) => {
    reflectivity.value = v
  })
reflectionFolder.close()

// const aoFolder = gui.addFolder('Ambient Occlusion')
// aoFolder
//   .add(options, 'samples', 1, 10, 1)
//   .name('Samples')
//   .onChange((v) => {
//     samples.value = v
//   })
// aoFolder
//   .add(options, 'spread', 0.1, 4, 0.01)
//   .name('spread')
//   .onChange((v) => {
//     spread.value = v
//   })
// aoFolder
//   .add(options, 'objectHeight', 0, 2, 0.01)
//   .name('Object Height')
//   .onChange((v) => {
//     objectHeight.value = v
//   })

//Adaptive DPR
const clock = new THREE.Clock()
let targetFPS = 45 // see notes
let frameCount = 0
let elapsed = 0

function adjustDPR(renderer: THREE.WebGPURenderer) {
  elapsed += clock.getDelta()
  frameCount++

  if (elapsed >= 0.094) {
    let fps = frameCount * elapsed * 100
    frameCount = 0
    elapsed -= 0.1

    if (fps < targetFPS * 0.95) {
      renderer.setPixelRatio(
        Math.min(1, Math.max(0.1, renderer.getPixelRatio() * 0.9))
      )
    } else if (fps > targetFPS) {
      renderer.setPixelRatio(Math.min(1, renderer.getPixelRatio() * 1.1))
    }

    //console.log(`DPR: ${renderer.getPixelRatio()} (FPS: ${fps})`)
  }
}

function animate() {
  adjustDPR(renderer)

  controls.update()

  camPos.value.copy(camera.position)
  camTarget.value.copy(controls.target)

  renderer.render(scene, camera)
}

Final Script

./src/main.ts

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
import './style.css'
import * as THREE from 'three/webgpu'
import {
  positionLocal,
  Fn,
  If,
  Loop,
  Break,
  float,
  vec2,
  vec3,
  min,
  max,
  length,
  normalize,
  dot,
  time,
  sin,
  cos,
  abs,
  negate,
  uniform,
  pow,
  reflect,
  clamp,
  mod,
  exp,
  mix,
  smoothstep,
} from 'three/tsl'
import { OrbitControls } from 'three/addons/controls/OrbitControls.js'
import { GUI } from 'three/addons/libs/lil-gui.module.min.js'

const scene = new THREE.Scene()

const camera = new THREE.PerspectiveCamera(
  53,
  window.innerWidth / window.innerHeight,
  0.1,
  1000
)
camera.position.set(5, 1.5, 4)

const renderer = new THREE.WebGPURenderer()
renderer.setSize(window.innerWidth, window.innerHeight)
document.body.appendChild(renderer.domElement)
renderer.setAnimationLoop(animate)
renderer.setPixelRatio(0.25) // start low for slower cards

window.addEventListener('resize', function () {
  camera.aspect = window.innerWidth / window.innerHeight
  camera.updateProjectionMatrix()
  renderer.setSize(window.innerWidth, window.innerHeight)
})

const controls = new OrbitControls(camera, renderer.domElement)
controls.enableDamping = true
controls.target.y = 1
controls.autoRotateSpeed = -0.5
//controls.autoRotate = true
controls.maxPolarAngle = Math.PI / 1.9

const options = {
  zoom: 0,
  maxSteps: 256,
  surfaceDistance: 0.0001,
  cameraNear: 0.0001,
  cameraFar: 128.0,
  shadowSoftness: 10,
  shadowIntensity: 0.1,
  shadowMaxSteps: 256,
  shadowFar: 128,
  maxReflections: 1,
  reflectivity: 0.5,
  samples: 5,
  spread: 0.5,
  objectHeight: 1,
}

const camPos = uniform(new THREE.Vector3())
const camTarget = uniform(new THREE.Vector3())
const zoom = uniform(options.zoom)
const maxSteps = uniform(options.maxSteps)
const surfaceDistance = uniform(options.surfaceDistance)
const cameraNear = uniform(options.cameraNear)
const cameraFar = uniform(options.cameraFar)
const shadowSoftness = uniform(options.shadowSoftness)
const shadowIntensity = uniform(options.shadowIntensity)
const shadowMaxSteps = uniform(options.shadowMaxSteps)
const shadowFar = uniform(options.shadowFar)
const maxReflections = uniform(options.maxReflections)
const reflectivity = uniform(options.reflectivity)
const samples = uniform(options.samples)
const spread = uniform(options.spread)
const objectHeight = uniform(options.objectHeight)

// @ts-ignore
const Floor = Fn(([position]) => {
  const floor = position.y

  const radius = 10.0
  const circle = length(position.xz).sub(radius)

  return max(floor, circle)
})

// @ts-ignore
const Sphere = Fn(([position, radius]) => {
  return length(position).sub(radius)
})

// @ts-ignore
const Box = Fn(([position, dimensions]) => {
  const distance = abs(position).sub(dimensions)
  return length(max(distance, 0.0)).add(
    min(max(distance.x, max(distance.y, distance.z)), 0.0)
  )
})

// @ts-ignore
const IntersectedSphereBox = Fn(([position, radius]) => {
  const circle = length(position).sub(radius.add(0.33))
  const box = Box(position, vec3(radius))
  return max(circle, box)
})

// @ts-ignore
const SubtractedSphereBox = Fn(([position, radius]) => {
  const circle = length(position).sub(radius.add(0.33))
  const box = Box(position, vec3(radius))
  return max(negate(circle), box)
})

// @ts-ignore
const sdfScene = Fn(([position]) => {
  const floor = Floor(position)

  const sphere = Sphere(position.sub(vec3(1.5, objectHeight, 1.5)), 1)

  const box = Box(position.sub(vec3(1.5, objectHeight, -1.5)), vec3(1))

  const intersectedSphereBox = IntersectedSphereBox(
    position.sub(vec3(-1.5, objectHeight, -1.5)),
    1
  )
  const subtractedSphereBox = SubtractedSphereBox(
    position.sub(vec3(-1.5, objectHeight, 1.5)),
    1
  )

  const distance = vec2(floor, 0).toVar()
  If(distance.x.greaterThan(sphere), () => {
    distance.assign(vec2(sphere, 1))
  })
  If(distance.x.greaterThan(box), () => {
    distance.assign(vec2(box, 2))
  })
  If(distance.x.greaterThan(intersectedSphereBox), () => {
    distance.assign(vec2(intersectedSphereBox, 3))
  })
  If(distance.x.greaterThan(subtractedSphereBox), () => {
    distance.assign(vec2(subtractedSphereBox, 4))
  })

  return distance
})

// @ts-ignore
const getNormal = Fn(([position, distance]) => {
  const offset = vec2(0.0001, 0)

  return normalize(
    distance.sub(
      vec3(
        sdfScene(position.sub(offset.xyy)).x,
        sdfScene(position.sub(offset.yxy)).x,
        sdfScene(position.sub(offset.yyx)).x
      )
    )
  )
})

// @ts-ignore
const shadowMarcher = Fn(([rayOrigin, rayDirection]) => {
  const shadow = float(1).toVar()
  const accumulatedDistance = float(cameraNear).toVar()

  // @ts-ignore
  Loop({ start: 0, end: shadowMaxSteps }, () => {
    const distance = sdfScene(
      rayOrigin.add(rayDirection.mul(accumulatedDistance))
    )

    If(abs(distance.x).lessThan(surfaceDistance), () => {
      shadow.assign(0)
      Break()
    }).Else(() => {
      shadow.assign(
        min(shadow, shadowSoftness.mul(distance.x).div(accumulatedDistance))
      ) //softens shadow
      accumulatedDistance.addAssign(clamp(distance.x, surfaceDistance, 0.025)) // works better for soft shadows
      //accumulatedDistance.addAssign(distance) // works better for hard shadows

      If(accumulatedDistance.greaterThan(shadowFar), () => {
        Break()
      })
    })
  })

  return shadow
})

// @ts-ignore
const atmosphericScattering = Fn(([position, direction]) => {
  const topColour = vec3(0.1, 0.2, 0.5) // Deep blue (upper sky)
  const midColour = vec3(1.0, 0.4, 0.2) // Orange-red (mid sky)
  const bottomColour = vec3(0.9, 0.6, 0.3) // Yellow near horizon

  const t = clamp(position.y.mul(0.5).add(0.5), 0.0, 1.0) // Horizon-based gradient
  const skyColour = mix(mix(bottomColour, midColour, t), vec3(0), t.mul(1.25))

  const radius = 0.01
  const distance = length(position.sub(normalize(direction)))
  const sun = exp(distance.negate().mul(distance.div(radius)))
  skyColour.addAssign(vec3(1.0, 0.8, 0.5).mul(sun))

  // Mie scattering (orange glow near the sun)
  const mie = exp(distance.mul(3.0).pow(2.0).negate()).mul(0.5)
  const mieColor = vec3(midColour).mul(mie)
  skyColour.addAssign(mieColor.mul(1.5))

  // Rayleigh scattering (blue tint in the upper sky)
  const rayleigh = exp(position.y.mul(2.5)).mul(0.3)
  const rayleighColor = rayleigh.mul(topColour)
  skyColour.addAssign(rayleighColor)

  // Night Transition
  const nightFactor = smoothstep(-0.1, 0.1, direction.y)
  skyColour.mulAssign(nightFactor)

  return skyColour
})

// @ts-ignore
const computeAO = Fn(([position, normal]) => {
  const occlusion = float(0.0).toVar()

  Loop({ start: 0, end: samples, condition: '<=' }, ({ i }) => {
    const spacer = float(i).div(samples)
    const samplePos = position.add(normal.mul(spacer.mul(spread)))
    const distance = sdfScene(samplePos)
    occlusion.addAssign(smoothstep(0.0, 0.1, distance))
  })
  return clamp(occlusion.div(samples), 0, 1.0)
  //return clamp(occlusion.div(samples).oneMinus(), 0, 1.0)
})

// @ts-ignore
const main = Fn(() => {
  const p = positionLocal

  const rayOrigin = camPos.toVar()
  const lookAt = camTarget

  const forward = normalize(lookAt.sub(rayOrigin))
  const rayDirection = normalize(p.add(forward.mul(zoom))).toVar()

  //const t = time.div(5)
  const lightPosition = vec3(-25, 7.5, -25)
  //const lightPosition = vec3(-25, sin(t).mul(10).add(7), -25)
  //const lightPosition = vec3(sin(t).mul(25), 2, cos(t).mul(25))
  //const lightPosition = vec3(sin(t).mul(25), sin(t).mul(10).add(8), cos(t).mul(25))

  const skyColour = atmosphericScattering(p, normalize(lightPosition))
  const finalColour = skyColour.toVar()
  const reflectivityFactor = float(1.0).toVar()

  Loop({ start: 0, end: maxReflections, condition: '<=' }, () => {
    const accumulatedDistance = float(cameraNear).toVar()
    const distance = vec2(0).toVar()
    const position = vec3(0).toVar()

    Loop({ start: 0, end: maxSteps, condition: '<' }, () => {
      position.assign(rayOrigin.add(rayDirection.mul(accumulatedDistance)))
      distance.assign(sdfScene(position))

      If(
        abs(distance.x)
          .lessThan(surfaceDistance)
          .or(accumulatedDistance.greaterThan(cameraFar)),
        () => {
          Break()
        }
      )

      accumulatedDistance.addAssign(distance.x)
    })

    If(accumulatedDistance.lessThan(cameraFar), () => {
      const lightDirection = normalize(lightPosition.sub(position))

      const normal = getNormal(position, distance.x)

      const diffuse = clamp(dot(normal, lightDirection), 0.75, 1).toVar()

      const diffuseColour = atmosphericScattering(
        reflect(rayDirection, normal),
        normalize(lightPosition)
      ).toVar()

      // const shadow = shadowMarcher(
      //   position.add(normal.mul(surfaceDistance)),
      //   vec3(lightDirection)
      // )
      // shadow.assign(max(shadowIntensity, shadow))
      // diffuse.mulAssign(shadow)

      const ao = computeAO(position, normal)
      diffuse.mulAssign(ao)

      finalColour.assign(
        mix(finalColour, diffuseColour.mul(diffuse), reflectivityFactor)
      )

      rayOrigin.assign(position.add(normal.mul(surfaceDistance)))
      rayDirection.assign(reflect(rayDirection, normal))
      reflectivityFactor.mulAssign(reflectivity)
    })
  })

  return finalColour
})

scene.backgroundNode = main()

const gui = new GUI()

const raymarchFolder = gui.addFolder('Raymarching')
raymarchFolder
  .add(options, 'zoom', 0, 10, 0.001)
  .name('Zoom')
  .onChange((v) => {
    zoom.value = v
  })
raymarchFolder
  .add(options, 'maxSteps', 1, 512, 1)
  .name('Raymarch Max Steps')
  .onChange((v) => {
    maxSteps.value = v
  })
raymarchFolder
  .add(options, 'surfaceDistance', 0, 0.001, 0.0001)
  .name('Surface Distance')
  .onChange((v) => {
    surfaceDistance.value = v
  })
raymarchFolder
  .add(options, 'cameraNear', 0.0001, 10, 0.1)
  .name('Camera Near')
  .onChange((v) => {
    cameraNear.value = v
  })
raymarchFolder
  .add(options, 'cameraFar', 1, 512, 0.1)
  .name('Camera Far')
  .onChange((v) => {
    cameraFar.value = v
  })
raymarchFolder.close()

// const lightingFolder = gui.addFolder('Lighting')
// lightingFolder
//     .add(options, 'shininess', 0, 100, 0.1)
//     .name('Shininess')
//     .onChange((v) => {
//         shininess.value = v
//     })

// lightingFolder
//     .add(options, 'specularStrength', 0, 1, 0.01)
//     .name('SpecularStrength')
//     .onChange((v) => {
//         specularStrength.value = v
//     })
// lightingFolder.close()

const shadowFolder = gui.addFolder('Shadows')
shadowFolder
  .add(options, 'shadowSoftness', 0, 100, 0.01)
  .name('Shadow Softness')
  .onChange((v) => {
    shadowSoftness.value = v
  })
shadowFolder
  .add(options, 'shadowIntensity', 0, 1, 0.01)
  .name('Shadow Intensity')
  .onChange((v) => {
    shadowIntensity.value = v
  })
shadowFolder
  .add(options, 'shadowMaxSteps', 1, 512, 1)
  .name('Shadow Max Steps')
  .onChange((v) => {
    shadowMaxSteps.value = v
  })
shadowFolder
  .add(options, 'shadowFar', 1, 512, 0.1)
  .name('Shadow Far')
  .onChange((v) => {
    shadowFar.value = v
  })
shadowFolder.close()

const reflectionFolder = gui.addFolder('Reflections')
reflectionFolder
  .add(options, 'maxReflections', 0, 3, 1)
  .name('Max Reflections')
  .onChange((v) => {
    maxReflections.value = v
  })
reflectionFolder
  .add(options, 'reflectivity', 0, 1, 0.1)
  .name('Reflectivity')
  .onChange((v) => {
    reflectivity.value = v
  })
reflectionFolder.close()

const aoFolder = gui.addFolder('Ambient Occlusion')
aoFolder
  .add(options, 'samples', 1, 10, 1)
  .name('Samples')
  .onChange((v) => {
    samples.value = v
  })
aoFolder
  .add(options, 'spread', 0.1, 4, 0.01)
  .name('spread')
  .onChange((v) => {
    spread.value = v
  })
aoFolder
  .add(options, 'objectHeight', 0, 2, 0.01)
  .name('Object Height')
  .onChange((v) => {
    objectHeight.value = v
  })

//Adaptive DPR
const clock = new THREE.Clock()
let targetFPS = 45 // see notes
let frameCount = 0
let elapsed = 0

function adjustDPR(renderer: THREE.WebGPURenderer) {
  elapsed += clock.getDelta()
  frameCount++

  if (elapsed >= 0.094) {
    let fps = frameCount * elapsed * 100
    frameCount = 0
    elapsed -= 0.1

    if (fps < targetFPS * 0.95) {
      renderer.setPixelRatio(
        Math.min(1, Math.max(0.1, renderer.getPixelRatio() * 0.9))
      )
    } else if (fps > targetFPS) {
      renderer.setPixelRatio(Math.min(1, renderer.getPixelRatio() * 1.1))
    }

    //console.log(`DPR: ${renderer.getPixelRatio()} (FPS: ${fps})`)
  }
}

function animate() {
  adjustDPR(renderer)

  controls.update()

  camPos.value.copy(camera.position)
  camTarget.value.copy(controls.target)

  renderer.render(scene, camera)
}