Skip to content

Raymarching

Video Lecture

Section Video Links
Raymarching Raymarching Raymarching

Description

We can use Signed Distance Fields (SDF) to define shapes and scenes, but if we want to view our SDF shapes in 3D, then we can use raymarching.

Raymarching will help us to calculate the distances to SDF shapes in 3D space. We will also be able to calculate the normal in which we can then use to calculate the lighting effects.

So in this first example, imagine a position in space, this is the camera position, and it is scanning a coordinate in a some direction, and the fragment shader will raymarch along that direction until it hits a surface. We can then use that information to color the returned pixel.

The Process Of Raymarching

The steps of raymarching are basically,

  • March along a ray and check the distance to some potential object at each step.
  • If the ray gets within a chosen surface distance tolerance, then we will assume that it has hit an object in the world space.
  • It's is an optimized algorithm in the way it jumps forward each step at a distance equal to the nearest point of any SDF shape around it.
<>

Working Example

<>

Start Script

./src/main.ts

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import './style.css'
import * as THREE from 'three/webgpu'
import {
  positionLocal,
  Fn,
  If,
  Loop,
  Break,
  float,
  vec2,
  vec3,
  min,
  max,
  length,
  normalize,
  cross,
  dot,
  time,
  sin,
  cos,
  abs,
  negate,
  uniform,
  atan,
} from 'three/tsl'
import { OrbitControls } from 'three/addons/controls/OrbitControls.js'
import { GUI } from 'three/addons/libs/lil-gui.module.min.js'

const scene = new THREE.Scene()

const camera = new THREE.PerspectiveCamera(
  53,
  window.innerWidth / window.innerHeight,
  0.1,
  10
)
camera.position.set(-5, 5, 4)

const renderer = new THREE.WebGPURenderer()
renderer.setSize(window.innerWidth, window.innerHeight)
document.body.appendChild(renderer.domElement)
renderer.setAnimationLoop(animate)

window.addEventListener('resize', function () {
  camera.aspect = window.innerWidth / window.innerHeight
  camera.updateProjectionMatrix()
  renderer.setSize(window.innerWidth, window.innerHeight)
})

const controls = new OrbitControls(camera, renderer.domElement)
controls.enableDamping = true
controls.target.y = 0.25

const options = {
  zoom: 0.1,
  maxSteps: 256,
  surfaceDistance: 0.0001,
  cameraNear: 0.1,
  cameraFar: 128.0,
}

const cameraPosition = uniform(new THREE.Vector3())
const cameraTarget = uniform(new THREE.Vector3())
const zoom = uniform(options.zoom)
const maxSteps = uniform(options.maxSteps)
const surfaceDistance = uniform(options.surfaceDistance)
const cameraNear = uniform(options.cameraNear)
const cameraFar = uniform(options.cameraFar)

// @ts-ignore
const rotateAroundAxis = Fn(([position, axis, radians]) => {
  axis = normalize(axis)

  const cosTheta = cos(radians)
  const sinTheta = sin(radians)

  const rotatedPoint = position
    .mul(cosTheta)
    .add(cross(axis, position).mul(sinTheta))
    .add(axis.mul(dot(axis, position).mul(cosTheta.oneMinus())))

  return rotatedPoint
})

// @ts-ignore
const Sphere = Fn(([position, radius]) => {
  return length(position).sub(radius)
})

// @ts-ignore
const Ellipse = Fn(([position, scale]) => {
  const distance = position.div(scale)
  return length(distance)
    .sub(1)
    .mul(min(min(scale.x, scale.y), scale.z))
})

// @ts-ignore
const Torus = Fn(([position, majorRadius, minorRadius]) => {
  const distance = length(position.xz).sub(majorRadius)
  return length(vec2(distance, position.y)).sub(minorRadius)
})

// @ts-ignore
const Box = Fn(([position, dimensions]) => {
  const distance = abs(position).sub(dimensions)
  return length(max(distance, 0.0)) // better if you don't need internal calculations. E.g, intersect or subtraction
  //return length(max(distance, 0.0)).add(min(max(distance.x, distance.y), 0.0)) // for 2D SDF
  //return length(max(distance, 0.0)).add(min(max(distance.x, max(distance.y, distance.z)), 0.0)) // 3D SDF
})

// @ts-ignore
const Cylinder = Fn(([position, radius, height]) => {
  const distance = vec2(
    length(position.xz).sub(radius),
    position.y.abs().sub(height)
  )
  return length(max(distance, 0.0)).add(min(max(distance.x, distance.y), 0.0))
})

// @ts-ignore
const CorrugatedCylinder = Fn(([position, radius, height]) => {
  const angle = atan(position.x, position.z)
  const bumps = cos(angle.mul(8)).mul(float(0.15))
  const distance = vec2(
    length(position.xz).sub(radius).add(bumps),
    position.y.abs().sub(height)
  )
  return length(max(distance, 0.0)).add(min(max(distance.x, distance.y), 0.0))
})

// @ts-ignore
const IntersectedSphereBox = Fn(([position, radius]) => {
  const circle = length(position).sub(radius.add(0.33))
  const box = Box(position, vec3(radius))
  return max(circle, box)
})

// @ts-ignore
const SubtractedSphereBox = Fn(([position, radius]) => {
  const circle = length(position).sub(radius.add(0.33))
  const box = Box(position, vec3(radius))
  return max(negate(circle), box)
})

// @ts-ignore
const UnionedSphereBox = Fn(([position, radius]) => {
  const circle = length(position).sub(radius.add(0.33))
  const box = Box(position, vec3(radius))
  return min(circle, box)
})

// @ts-ignore
const sdfScene = Fn(([position]) => {
  //const t = time.mul(0.5)

  const sphere = Sphere(position.sub(vec3(0, 1, 0)), 1)
  const ellipse = Ellipse(position.sub(vec3(0, 1, 3)), vec3(1, 0.5, 1))
  const torus = Torus(position.sub(vec3(3, 1, 3)), 1, 0.5)
  const box = Box(position.sub(vec3(3, 1, 0)), vec3(1))
  // const cylinder = Cylinder(position.sub(vec3(3, 1, -3)), 1, 1)
  // const corrugatedCylinder = CorrugatedCylinder(position.sub(vec3(0, 1, -3)), 1, 1)
  // const intersectedSphereBox = IntersectedSphereBox(position.sub(vec3(-3, 1, -3)), 1)
  // const subtractedSphereBox = SubtractedSphereBox(position.sub(vec3(-3, 1, 0)), 1)
  // const unionedSphereBox = UnionedSphereBox(position.sub(vec3(-3, 1, 3)), 1)

  const distance = sphere.toVar()
  distance.assign(min(distance, ellipse))
  distance.assign(min(distance, torus))
  distance.assign(min(distance, box))
  // distance.assign(min(distance, cylinder))
  // distance.assign(min(distance, corrugatedCylinder))
  // distance.assign(min(distance, intersectedSphereBox))
  // distance.assign(min(distance, subtractedSphereBox))
  // distance.assign(min(distance, unionedSphereBox))

  return distance
})

// @ts-ignore
const getNormal = Fn(([position, distance]) => {
  const offset = vec2(0.025, 0)

  return normalize(
    distance.sub(
      vec3(
        sdfScene(position.sub(offset.xyy)),
        sdfScene(position.sub(offset.yxy)),
        sdfScene(position.sub(offset.yyx))
      )
    )
  )
})

// @ts-ignore
const main = Fn(() => {
  const p = positionLocal

  const rayOrigin = vec3(-5, 5, 4) //cameraPosition
  const lookAt = vec3(0, 5, 0) //cameraTarget

  const forward = normalize(lookAt.sub(rayOrigin))
  const rayDirection = normalize(p.add(forward.mul(zoom)))

  const accumulatedDistance = float(cameraNear).toVar()
  const distance = float(0).toVar()
  const position = vec3(0).toVar()

  // @ts-ignore
  Loop({ start: 0, end: maxSteps }, () => {
    position.assign(rayOrigin.add(rayDirection.mul(accumulatedDistance)))
    distance.assign(sdfScene(position))

    If(
      abs(distance)
        .lessThan(surfaceDistance)
        .or(accumulatedDistance.greaterThan(cameraFar)),
      () => {
        Break()
      }
    )

    accumulatedDistance.addAssign(distance)
  })

  const finalColour = getNormal(position, distance)

  return finalColour
})

scene.backgroundNode = main()

const gui = new GUI({ width: 600 })
gui
  .add(options, 'zoom', 0, 10, 0.001)
  .name('Zoom')
  .onChange((v) => {
    zoom.value = v
  })
gui
  .add(options, 'maxSteps', 1, 512, 1)
  .name('Raymarch Max Steps')
  .onChange((v) => {
    maxSteps.value = v
  })
gui
  .add(options, 'surfaceDistance', 0, 0.1, 0.0001)
  .name('Surface Distance')
  .onChange((v) => {
    surfaceDistance.value = v
  })
gui
  .add(options, 'cameraNear', 0.0001, 10, 0.1)
  .name('Camera Near')
  .onChange((v) => {
    cameraNear.value = v
  })
gui
  .add(options, 'cameraFar', 1, 512, 0.1)
  .name('Camera Far')
  .onChange((v) => {
    cameraFar.value = v
  })

function animate() {
  controls.update()

  cameraPosition.value.copy(camera.position)
  cameraTarget.value.copy(controls.target)

  renderer.render(scene, camera)
}

Final Script

./src/main.ts

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import './style.css'
import * as THREE from 'three/webgpu'
import {
  positionLocal,
  Fn,
  If,
  Loop,
  Break,
  float,
  vec2,
  vec3,
  min,
  max,
  length,
  normalize,
  cross,
  dot,
  time,
  sin,
  cos,
  abs,
  negate,
  uniform,
  atan,
} from 'three/tsl'
import { OrbitControls } from 'three/addons/controls/OrbitControls.js'
import { GUI } from 'three/addons/libs/lil-gui.module.min.js'

const scene = new THREE.Scene()

const camera = new THREE.PerspectiveCamera(
  53,
  window.innerWidth / window.innerHeight,
  0.1,
  10
)
camera.position.set(-5, 5, 4)

const renderer = new THREE.WebGPURenderer()
renderer.setSize(window.innerWidth, window.innerHeight)
document.body.appendChild(renderer.domElement)
renderer.setAnimationLoop(animate)

window.addEventListener('resize', function () {
  camera.aspect = window.innerWidth / window.innerHeight
  camera.updateProjectionMatrix()
  renderer.setSize(window.innerWidth, window.innerHeight)
})

const controls = new OrbitControls(camera, renderer.domElement)
controls.enableDamping = true
controls.target.y = 0.25

const options = {
  zoom: 0.1,
  maxSteps: 256,
  surfaceDistance: 0.0001,
  cameraNear: 0.1,
  cameraFar: 256.0,
}

const cameraPosition = uniform(new THREE.Vector3())
const cameraTarget = uniform(new THREE.Vector3())
const zoom = uniform(options.zoom)
const maxSteps = uniform(options.maxSteps)
const surfaceDistance = uniform(options.surfaceDistance)
const cameraNear = uniform(options.cameraNear)
const cameraFar = uniform(options.cameraFar)

// @ts-ignore
const rotateAroundAxis = Fn(([position, axis, radians]) => {
  axis = normalize(axis)

  const cosTheta = cos(radians)
  const sinTheta = sin(radians)

  const rotatedPoint = position
    .mul(cosTheta)
    .add(cross(axis, position).mul(sinTheta))
    .add(axis.mul(dot(axis, position).mul(cosTheta.oneMinus())))

  return rotatedPoint
})

// @ts-ignore
const Sphere = Fn(([position, radius]) => {
  return length(position).sub(radius)
})

// @ts-ignore
const Ellipse = Fn(([position, scale]) => {
  const distance = position.div(scale)
  return length(distance)
    .sub(1)
    .mul(min(min(scale.x, scale.y), scale.z))
})

// @ts-ignore
const Torus = Fn(([position, majorRadius, minorRadius]) => {
  const distance = length(position.xz).sub(majorRadius)
  return length(vec2(distance, position.y)).sub(minorRadius)
})

// @ts-ignore
const Box = Fn(([position, dimensions]) => {
  const distance = abs(position).sub(dimensions)
  //return length(max(distance, 0.0)) // better if you don't need internal calculations. E.g, intersect or subtraction
  //return length(max(distance, 0.0)).add(min(max(distance.x, distance.y), 0.0)) // for 2D SDF
  return length(max(distance, 0.0)).add(
    min(max(distance.x, max(distance.y, distance.z)), 0.0)
  ) // 3D SDF
})

// @ts-ignore
const Cylinder = Fn(([position, radius, height]) => {
  const distance = vec2(
    length(position.xz).sub(radius),
    position.y.abs().sub(height)
  )
  return length(max(distance, 0.0)).add(min(max(distance.x, distance.y), 0.0))
})

// @ts-ignore
const CorrugatedCylinder = Fn(([position, radius, height]) => {
  const angle = atan(position.x, position.z)
  const bumps = cos(angle.mul(8).mul(sin(time))).mul(float(0.15))
  const distance = vec2(
    length(position.xz).sub(radius).add(bumps),
    position.y.abs().sub(height)
  )
  return length(max(distance, 0.0)).add(min(max(distance.x, distance.y), 0.0))
})

// @ts-ignore
const IntersectedSphereBox = Fn(([position, radius]) => {
  const circle = length(position).sub(radius.add(0.33))
  const box = Box(position, vec3(radius))
  return max(circle, box)
})

// @ts-ignore
const SubtractedSphereBox = Fn(([position, radius]) => {
  const circle = length(position).sub(radius.add(0.33))
  const box = Box(position, vec3(radius))
  return max(negate(circle), box)
})

// @ts-ignore
const UnionedSphereBox = Fn(([position, radius]) => {
  const circle = length(position).sub(radius.add(0.33))
  const box = Box(position, vec3(radius))
  return min(circle, box)
})

// @ts-ignore
const sdfScene = Fn(([position]) => {
  const t = time.mul(0.5)

  const sphere = Sphere(position.sub(vec3(0, 1, 0)), 1)
  const ellipse = Ellipse(
    rotateAroundAxis(position.sub(vec3(0, 1, 3)), vec3(1, 0.5, 0), t),
    vec3(1, 0.5, 1)
  )
  const torus = Torus(
    rotateAroundAxis(position.sub(vec3(3, 1, 3)), vec3(0.5, 0, 1), t),
    1,
    0.5
  )
  const box = Box(
    rotateAroundAxis(position.sub(vec3(3, 1, 0)), vec3(0, 0.5, 1), t),
    vec3(1)
  )
  const cylinder = Cylinder(
    rotateAroundAxis(position.sub(vec3(3, 1, -3)), vec3(1, 0, 1), t),
    1,
    1
  )
  const corrugatedCylinder = CorrugatedCylinder(
    rotateAroundAxis(position.sub(vec3(0, 1, -3)), vec3(1, 1, 0), t),
    1,
    1
  )
  const intersectedSphereBox = IntersectedSphereBox(
    rotateAroundAxis(position.sub(vec3(-3, 1, -3)), vec3(0.5, 0.5, 0.5), t),
    1
  )
  const subtractedSphereBox = SubtractedSphereBox(
    rotateAroundAxis(position.sub(vec3(-3, 1, 0)), vec3(0, 1, 1), t),
    1
  )
  const unionedSphereBox = UnionedSphereBox(
    rotateAroundAxis(position.sub(vec3(-3, 1, 3)), vec3(1, 1, 0.5), t),
    1
  )

  const distance = sphere.toVar()
  distance.assign(min(distance, ellipse))
  distance.assign(min(distance, torus))
  distance.assign(min(distance, box))
  distance.assign(min(distance, cylinder))
  distance.assign(min(distance, corrugatedCylinder))
  distance.assign(min(distance, intersectedSphereBox))
  distance.assign(min(distance, subtractedSphereBox))
  distance.assign(min(distance, unionedSphereBox))

  return distance
})

// @ts-ignore
const getNormal = Fn(([position, distance]) => {
  const offset = vec2(0.025, 0)

  return normalize(
    distance.sub(
      vec3(
        sdfScene(position.sub(offset.xyy)),
        sdfScene(position.sub(offset.yxy)),
        sdfScene(position.sub(offset.yyx))
      )
    )
  )
})

// @ts-ignore
const main = Fn(() => {
  const p = positionLocal

  const rayOrigin = cameraPosition
  const lookAt = cameraTarget

  const forward = normalize(lookAt.sub(rayOrigin))
  const rayDirection = normalize(p.add(forward.mul(zoom)))

  const accumulatedDistance = float(cameraNear).toVar()
  const distance = float(0).toVar()
  const position = vec3(0).toVar()

  // @ts-ignore
  Loop({ start: 0, end: maxSteps }, () => {
    position.assign(rayOrigin.add(rayDirection.mul(accumulatedDistance)))
    distance.assign(sdfScene(position))

    If(
      abs(distance)
        .lessThan(surfaceDistance)
        .or(accumulatedDistance.greaterThan(cameraFar)),
      () => {
        Break()
      }
    )

    accumulatedDistance.addAssign(distance)
  })

  const finalColour = getNormal(position, distance)

  return finalColour
})

scene.backgroundNode = main()

const gui = new GUI({ width: 600 })
gui
  .add(options, 'zoom', 0, 10, 0.001)
  .name('Zoom')
  .onChange((v) => {
    zoom.value = v
  })
gui
  .add(options, 'maxSteps', 1, 512, 1)
  .name('Raymarch Max Steps')
  .onChange((v) => {
    maxSteps.value = v
  })
gui
  .add(options, 'surfaceDistance', 0, 0.1, 0.0001)
  .name('Surface Distance')
  .onChange((v) => {
    surfaceDistance.value = v
  })
gui
  .add(options, 'cameraNear', 0.0001, 10, 0.1)
  .name('Camera Near')
  .onChange((v) => {
    cameraNear.value = v
  })
gui
  .add(options, 'cameraFar', 1, 512, 0.1)
  .name('Camera Far')
  .onChange((v) => {
    cameraFar.value = v
  })

function animate() {
  controls.update()

  cameraPosition.value.copy(camera.position)
  cameraTarget.value.copy(controls.target)

  renderer.render(scene, camera)
}