Skip to content

Physics with Cannon.js

Video Lecture

Physics with Cannons.js Physics with Cannons.js Physics with Cannon.js

Description

Animation can also be achieved using a Physics library. I will use Cannon.js. Cannon.js is a rigid body simulation library. It can be used to make objects move and interact in a realistic way and provide collision detection possibilities.

Basic Concepts

  • Shape : A geometrical shape, such as a sphere, cube or plane, used for the the physics calculations.
  • Rigid Body : A rigid body has a shape and a number of other properties used in the calculations such as mass and inertia.
  • Constraint : A 3D body has 6 degrees of freedom, 3 for position and three to describe the rotation vector. A constraint is a limit on one of the degrees of freedom.
  • Contact constraint : A type of constraint to simulate friction and restitution. These are like the faces of an object where the constraint is applied.
  • World : A collection of bodies and constraints that interact together.
  • Solver : The algorithm that is passed over the bodies and constraints to calculate there physical properties and adjust them accordingly.

Collision Detection

Collision detection algorithms determine what pairs of objects may be colliding. Collision detection is a computationally expensive process, so various methods can be used to simplify the collision detection.

  • Narrowphase : Outright body vs body collision detection. This is the most computationally expensive.
  • Broadphase : Is a compromise on Narrowphase where various techniques can be used to improve collision detection performance.

Cannonjs provides several options for broadphase detection.

Phase Description
NaiveBroadphase Default. The NaiveBroadphase looks at all possible pairs without restriction, therefore it has complexity N^2. It is similar to the Narrowphase technique, except it decides first whether objects are close enough before checking if there bodies touch. NaiveBroadphase is the default and is suitable for the most common use cases, but becomes less performant if there are many objects in the physics world.
SAPBroadphase The Sweep and Prune algorithm sorts bodies along an axis and then moves down that list finding pairs by looking at body size and position of the next bodies. For best performance, choose an axis that the bodies are spread out more on. Set to 0 for X axis, and 1 for Y axis. Default axisIndex is 0 (X axis).
GridBroadphase Axis aligned uniform grid broadphase. Divides space into a grid of cells. Bodies are placed into the cells they overlap and bodies in the same cell are paired. GridBroadphase needs to know the size of the space ahead of time. Set number of cells when you create the object. Default number of cells is X = 10, Y = 10, Z = 10.

Iterations

The Solver algorithms decide what force to add to bodies in contact. The solver is iterative, which means that it solves the equations incrementally on each animation pass. It will get closer to the solution for each iteration during the loop. A number too low for the solver iterations will result in increasingly inaccurate contact forces, which can appear as jittering or vibrations on the object, and a higher number will increase precision and stability, but also compromise performance.

The default solver iterations is 10.

world.solver.iterations = 10

Supported Cannon.js Shape Collisions

. Box Sphere Cylinder Plane Convex Trimesh
Box
Sphere
Cylinder
Plane
Convex
Trimesh

Setup

Install cannonjs

npm install cannon

Start Scripts

./src/client/client.ts

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import * as THREE from 'three'
import { OrbitControls } from 'three/examples/jsm/controls/OrbitControls'
import Stats from 'three/examples/jsm/libs/stats.module'
import { GUI } from 'three/examples/jsm/libs/dat.gui.module'
import * as CANNON from 'cannon'

const scene = new THREE.Scene()
scene.add(new THREE.AxesHelper(5))

const light1 = new THREE.SpotLight()
light1.position.set(2.5, 5, 5)
light1.angle = Math.PI / 4
light1.penumbra = 0.5
light1.castShadow = true
light1.shadow.mapSize.width = 1024
light1.shadow.mapSize.height = 1024
light1.shadow.camera.near = 0.5
light1.shadow.camera.far = 20
scene.add(light1)

const light2 = new THREE.SpotLight()
light2.position.set(-2.5, 5, 5)
light2.angle = Math.PI / 4
light2.penumbra = 0.5
light2.castShadow = true
light2.shadow.mapSize.width = 1024
light2.shadow.mapSize.height = 1024
light2.shadow.camera.near = 0.5
light2.shadow.camera.far = 20
scene.add(light2)

const camera = new THREE.PerspectiveCamera(
    75,
    window.innerWidth / window.innerHeight,
    0.1,
    1000
)
camera.position.set(0, 2, 4)

const renderer = new THREE.WebGLRenderer()
renderer.setSize(window.innerWidth, window.innerHeight)
renderer.shadowMap.enabled = true
document.body.appendChild(renderer.domElement)

const controls = new OrbitControls(camera, renderer.domElement)
controls.enableDamping = true
controls.target.y = 2

// const world = new CANNON.World()
// world.gravity.set(0, -9.82, 0)
// //world.broadphase = new CANNON.NaiveBroadphase() //
// //world.solver.iterations = 10
// //world.allowSleep = true

const normalMaterial = new THREE.MeshNormalMaterial()
const phongMaterial = new THREE.MeshPhongMaterial()

const cubeGeometry = new THREE.BoxGeometry(1, 1, 1)
const cubeMesh = new THREE.Mesh(cubeGeometry, normalMaterial)
cubeMesh.position.x = -3
cubeMesh.position.y = 3
cubeMesh.castShadow = true
scene.add(cubeMesh)
// const cubeShape = new CANNON.Box(new CANNON.Vec3(0.5, 0.5, 0.5))
// const cubeBody = new CANNON.Body({ mass: 1 })
// cubeBody.addShape(cubeShape)
// cubeBody.position.x = cubeMesh.position.x
// cubeBody.position.y = cubeMesh.position.y
// cubeBody.position.z = cubeMesh.position.z
// world.addBody(cubeBody)

const sphereGeometry = new THREE.SphereGeometry()
const sphereMesh = new THREE.Mesh(sphereGeometry, normalMaterial)
sphereMesh.position.x = -1
sphereMesh.position.y = 3
sphereMesh.castShadow = true
scene.add(sphereMesh)
// const sphereShape = new CANNON.Sphere(1)
// const sphereBody = new CANNON.Body({ mass: 1 })
// sphereBody.addShape(sphereShape)
// sphereBody.position.x = sphereMesh.position.x
// sphereBody.position.y = sphereMesh.position.y
// sphereBody.position.z = sphereMesh.position.z
// world.addBody(sphereBody)

const icosahedronGeometry =
    new THREE.IcosahedronGeometry(1, 0)
const icosahedronMesh = new THREE.Mesh(
    icosahedronGeometry,
    normalMaterial
)
icosahedronMesh.position.x = 1
icosahedronMesh.position.y = 3
icosahedronMesh.castShadow = true
scene.add(icosahedronMesh)
// const position = icosahedronMesh.geometry.attributes.position.array
// const icosahedronPoints: CANNON.Vec3[] = []
// for (let i = 0; i < position.length; i += 3) {
//     icosahedronPoints.push(
//         new CANNON.Vec3(position[i], position[i + 1], position[i + 2])
//     )
// }
// const icosahedronFaces: number[][] = []
// for (let i = 0; i < position.length / 3; i += 3) {
//     icosahedronFaces.push([i, i + 1, i + 2])
// }
// const icosahedronShape = new CANNON.ConvexPolyhedron(
//     icosahedronPoints,
//     icosahedronFaces
// )
// const icosahedronBody = new CANNON.Body({ mass: 1 })
// icosahedronBody.addShape(icosahedronShape)
// icosahedronBody.position.x = icosahedronMesh.position.x
// icosahedronBody.position.y = icosahedronMesh.position.y
// icosahedronBody.position.z = icosahedronMesh.position.z
// world.addBody(icosahedronBody)

const torusKnotGeometry = new THREE.TorusKnotGeometry()
const torusKnotMesh = new THREE.Mesh(
    torusKnotGeometry,
    normalMaterial
)
torusKnotMesh.position.x = 4
torusKnotMesh.position.y = 3
torusKnotMesh.castShadow = true
scene.add(torusKnotMesh)
// position = torusKnotMesh.geometry.attributes.position.array
// const torusKnotPoints: CANNON.Vec3[] = []
// for (let i = 0; i < position.length; i += 3) {
//     torusKnotPoints.push(new CANNON.Vec3(position[i], position[i + 1], position[i + 2]));
// }
// const torusKnotFaces: number[][] = []
// for (let i = 0; i < position.length / 3; i += 3) {
//     torusKnotFaces.push([i, i + 1, i + 2])
// }
// const torusKnotShape = new CANNON.ConvexPolyhedron(torusKnotPoints, torusKnotFaces)
// const torusKnotShape = CreateTrimesh(torusKnotMesh.geometry)
// const torusKnotBody = new CANNON.Body({ mass: 1 })
// torusKnotBody.addShape(torusKnotShape)
// torusKnotBody.position.x = torusKnotMesh.position.x
// torusKnotBody.position.y = torusKnotMesh.position.y
// torusKnotBody.position.z = torusKnotMesh.position.z
// world.addBody(torusKnotBody)

// function CreateTrimesh(geometry: THREE.BufferGeometry) {
//     const vertices = (geometry as THREE.BufferGeometry).attributes.position
//         .array
//     const indices = Object.keys(vertices).map(Number)
//     return new CANNON.Trimesh(vertices as [], indices)
// }

const planeGeometry = new THREE.PlaneGeometry(25, 25)
const planeMesh = new THREE.Mesh(planeGeometry, phongMaterial)
planeMesh.rotateX(-Math.PI / 2)
planeMesh.receiveShadow = true
scene.add(planeMesh)
// const planeShape = new CANNON.Plane()
// const planeBody = new CANNON.Body({ mass: 0 })
// planeBody.addShape(planeShape)
// planeBody.quaternion.setFromAxisAngle(new CANNON.Vec3(1, 0, 0), -Math.PI / 2)
// world.addBody(planeBody)

window.addEventListener('resize', onWindowResize, false)
function onWindowResize() {
    camera.aspect = window.innerWidth / window.innerHeight
    camera.updateProjectionMatrix()
    renderer.setSize(window.innerWidth, window.innerHeight)
    render()
}

const stats = Stats()
document.body.appendChild(stats.dom)

const gui = new GUI()
// const physicsFolder = gui.addFolder('Physics')
// physicsFolder.add(world.gravity, 'x', -10.0, 10.0, 0.1)
// physicsFolder.add(world.gravity, 'y', -10.0, 10.0, 0.1)
// physicsFolder.add(world.gravity, 'z', -10.0, 10.0, 0.1)
// physicsFolder.open()

const clock = new THREE.Clock()
//let delta

function animate() {
    requestAnimationFrame(animate)

    controls.update()

    // delta = clock.getDelta()
    // if (delta > 0.1) delta = 0.1
    // world.step(delta)

    // // Copy coordinates from Cannon.js to Three.js
    // cubeMesh.position.set(
    //     cubeBody.position.x,
    //     cubeBody.position.y,
    //     cubeBody.position.z
    // )
    // cubeMesh.quaternion.set(
    //     cubeBody.quaternion.x,
    //     cubeBody.quaternion.y,
    //     cubeBody.quaternion.z,
    //     cubeBody.quaternion.w
    // )
    // sphereMesh.position.set(
    //     sphereBody.position.x,
    //     sphereBody.position.y,
    //     sphereBody.position.z
    // )
    // sphereMesh.quaternion.set(
    //     sphereBody.quaternion.x,
    //     sphereBody.quaternion.y,
    //     sphereBody.quaternion.z,
    //     sphereBody.quaternion.w
    // )
    // icosahedronMesh.position.set(
    //     icosahedronBody.position.x,
    //     icosahedronBody.position.y,
    //     icosahedronBody.position.z
    // )
    // icosahedronMesh.quaternion.set(
    //     icosahedronBody.quaternion.x,
    //     icosahedronBody.quaternion.y,
    //     icosahedronBody.quaternion.z,
    //     icosahedronBody.quaternion.w
    // )
    // torusKnotMesh.position.set(
    //     torusKnotBody.position.x,
    //     torusKnotBody.position.y,
    //     torusKnotBody.position.z
    // )
    // torusKnotMesh.quaternion.set(
    //     torusKnotBody.quaternion.x,
    //     torusKnotBody.quaternion.y,
    //     torusKnotBody.quaternion.z,
    //     torusKnotBody.quaternion.w
    // )

    render()

    stats.update()
}

function render() {
    renderer.render(scene, camera)
}

animate()

./src/typings/cannon/index.d.ts

Create a new folder called ./src/typings/cannon/ and add the TypeScript definition file below for cannon.js and name it index.d.ts

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
// Type definitions for cannon 0.1
// Project: https://github.com/clark-stevenson/cannon.d.ts
// Definitions by: Clark Stevenson <https://github.com/clark-stevenson>
//                 Grzegorz Rozdzialik <https://github.com/Gelio>
//                 Sean Bradley <https://sbcode.net/threejs/>
// Definitions: https://github.com/DefinitelyTyped/DefinitelyTyped

declare module CANNON {
    export interface IAABBOptions {
        upperBound?: Vec3
        lowerBound?: Vec3
    }

    export class AABB {
        lowerBound: Vec3
        upperBound: Vec3

        constructor(options?: IAABBOptions)

        clone(): AABB
        copy(aabb: AABB): void
        extend(aabb: AABB): void
        getCorners(
            a: Vec3,
            b: Vec3,
            c: Vec3,
            d: Vec3,
            e: Vec3,
            f: Vec3,
            g: Vec3,
            h: Vec3
        ): void
        overlaps(aabb: AABB): boolean
        setFromPoints(
            points: Vec3[],
            position?: Vec3,
            quaternion?: Quaternion,
            skinSize?: number
        ): AABB
        toLocalFrame(frame: Transform, target: AABB): AABB
        toWorldFrame(frame: Transform, target: AABB): AABB
    }

    export class ArrayCollisionMatrix {
        matrix: Mat3[]

        get(i: number, j: number): number
        set(i: number, j: number, value: number): void
        reset(): void
        setNumObjects(n: number): void
    }

    export class BroadPhase {
        world: World
        useBoundingBoxes: boolean
        dirty: boolean

        collisionPairs(world: World, p1: Body[], p2: Body[]): void
        needBroadphaseCollision(bodyA: Body, bodyB: Body): boolean
        intersectionTest(
            bodyA: Body,
            bodyB: Body,
            pairs1: Body[],
            pairs2: Body[]
        ): void
        doBoundingSphereBroadphase(
            bodyA: Body,
            bodyB: Body,
            pairs1: Body[],
            pairs2: Body[]
        ): void
        doBoundingBoxBroadphase(
            bodyA: Body,
            bodyB: Body,
            pairs1: Body[],
            pairs2: Body[]
        ): void
        makePairsUnique(pairs1: Body[], pairs2: Body[]): void
        setWorld(world: World): void
        boundingSphereCheck(bodyA: Body, bodyB: Body): boolean
        aabbQuery(world: World, aabb: AABB, result: Body[]): Body[]
    }

    export class GridBroadphase extends BroadPhase {
        nx: number
        ny: number
        nz: number
        aabbMin: Vec3
        aabbMax: Vec3
        bins: any[]

        constructor(
            aabbMin?: Vec3,
            aabbMax?: Vec3,
            nx?: number,
            ny?: number,
            nz?: number
        )
    }

    export class NaiveBroadphase extends BroadPhase {}

    export class ObjectCollisionMatrix {
        matrix: number[]

        get(i: number, j: number): number
        set(i: number, j: number, value: number): void
        reset(): void
        setNumObjects(n: number): void
    }

    export class Ray {
        from: Vec3
        to: Vec3
        precision: number
        checkCollisionResponse: boolean

        constructor(from?: Vec3, to?: Vec3)

        getAABB(result: RaycastResult): void
    }

    export class RaycastResult {
        rayFromWorld: Vec3
        rayToWorld: Vec3
        hitNormalWorld: Vec3
        hitPointWorld: Vec3
        hasHit: boolean
        shape: Shape
        body: Body
        distance: number

        reset(): void
        set(
            rayFromWorld: Vec3,
            rayToWorld: Vec3,
            hitNormalWorld: Vec3,
            hitPointWorld: Vec3,
            shape: Shape,
            body: Body,
            distance: number
        ): void
    }

    export class SAPBroadphase extends BroadPhase {
        static insertionSortX(a: any[]): any[]
        static insertionSortY(a: any[]): any[]
        static insertionSortZ(a: any[]): any[]
        static checkBounds(bi: Body, bj: Body, axisIndex?: number): boolean

        axisList: any[]
        world: World
        axisIndex: number

        constructor(world?: World)

        autoDetectAxis(): void
        aabbQuery(world: World, aabb: AABB, result?: Body[]): Body[]
    }

    export interface IConstraintOptions {
        collideConnected?: boolean
        wakeUpBodies?: boolean
    }

    export class Constraint {
        equations: any[]
        bodyA: Body
        bodyB: Body
        id: number
        collideConnected: boolean

        constructor(bodyA: Body, bodyB: Body, options?: IConstraintOptions)

        update(): void
        disable(): void
        enable(): void
    }

    export class DistanceConstraint extends Constraint {
        constructor(
            bodyA: Body,
            bodyB: Body,
            distance: number,
            maxForce?: number
        )
    }

    export interface IHingeConstraintOptions {
        pivotA?: Vec3
        axisA?: Vec3
        pivotB?: Vec3
        axisB?: Vec3
        maxForce?: number
    }

    export class HingeConstraint extends Constraint {
        motorEnabled: boolean
        motorTargetVelocity: number
        motorMinForce: number
        motorMaxForce: number
        motorEquation: RotationalMotorEquation
        axisA: Vec3
        axisB: Vec3

        constructor(bodyA: Body, bodyB: Body, options?: IHingeConstraintOptions)

        enableMotor(): void
        disableMotor(): void
        setMotorSpeed(speed: number): void
    }

    export class PointToPointConstraint extends Constraint {
        constructor(
            bodyA: Body,
            pivotA: Vec3,
            bodyB: Body,
            pivotB: Vec3,
            maxForce?: number
        )
    }

    export interface ILockConstraintOptions {
        maxForce?: number
    }

    export class LockConstraint extends Constraint {
        constructor(bodyA: Body, bodyB: Body, options?: ILockConstraintOptions)
    }

    export interface IConeTwistConstraintOptions {
        pivotA?: Vec3
        pivotB?: Vec3
        axisA?: Vec3
        axisB?: Vec3
        maxForce?: number
    }

    export class ConeTwistConstraint extends Constraint {
        constructor(
            bodyA: Body,
            bodyB: Body,
            options?: IConeTwistConstraintOptions
        )
    }

    export class Equation {
        id: number
        minForce: number
        maxForce: number
        bi: Body
        bj: Body
        a: number
        b: number
        eps: number
        jacobianElementA: JacobianElement
        jacobianElementB: JacobianElement
        enabled: boolean

        constructor(bi: Body, bj: Body, minForce?: number, maxForce?: number)

        setSpookParams(
            stiffness: number,
            relaxation: number,
            timeStep: number
        ): void
        computeB(a: number, b: number, h: number): number
        computeGq(): number
        computeGW(): number
        computeGWlamda(): number
        computeGiMf(): number
        computeGiMGt(): number
        addToWlamda(deltalambda: number): number
        computeC(): number
    }

    export class FrictionEquation extends Equation {
        constructor(bi: Body, bj: Body, slipForce: number)
    }

    export class RotationalEquation extends Equation {
        ni: Vec3
        nj: Vec3
        nixnj: Vec3
        njxni: Vec3
        invIi: Mat3
        invIj: Mat3
        relVel: Vec3
        relForce: Vec3

        constructor(bodyA: Body, bodyB: Body)
    }

    export class RotationalMotorEquation extends Equation {
        axisA: Vec3
        axisB: Vec3
        invLi: Mat3
        invIj: Mat3
        targetVelocity: number

        constructor(bodyA: Body, bodyB: Body, maxForce?: number)
    }

    export class ContactEquation extends Equation {
        restitution: number
        ri: Vec3
        rj: Vec3
        penetrationVec: Vec3
        ni: Vec3
        rixn: Vec3
        rjxn: Vec3
        invIi: Mat3
        invIj: Mat3
        biInvInertiaTimesRixn: Vec3
        bjInvInertiaTimesRjxn: Vec3

        constructor(bi: Body, bj: Body)
    }

    export interface IContactMaterialOptions {
        friction?: number
        restitution?: number
        contactEquationStiffness?: number
        contactEquationRelaxation?: number
        frictionEquationStiffness?: number
        frictionEquationRelaxation?: number
    }

    export class ContactMaterial {
        id: number
        materials: Material[]
        friction: number
        restitution: number
        contactEquationStiffness: number
        contactEquationRelaxation: number
        frictionEquationStiffness: number
        frictionEquationRelaxation: number

        constructor(
            m1: Material,
            m2: Material,
            options?: IContactMaterialOptions
        )
    }

    export class Material {
        name: string
        id: number
        friction: number
        restitution: number

        constructor(name: string)
    }

    export class JacobianElement {
        spatial: Vec3
        rotational: Vec3

        multiplyElement(element: JacobianElement): number
        multiplyVectors(spacial: Vec3, rotational: Vec3): number
    }

    export class Mat3 {
        constructor(elements?: number[])

        identity(): void
        setZero(): void
        setTrace(vec3: Vec3): void
        getTrace(target: Vec3): void
        vmult(v: Vec3, target?: Vec3): Vec3
        smult(s: number): void
        mmult(m: Mat3): Mat3
        scale(v: Vec3, target?: Mat3): Mat3
        solve(b: Vec3, target?: Vec3): Vec3
        e(row: number, column: number, value?: number): number
        copy(source: Mat3): Mat3
        toString(): string
        reverse(target?: Mat3): Mat3
        setRotationFromQuaternion(q: Quaternion): Mat3
        transpose(target?: Mat3): Mat3
    }

    export class Quaternion {
        x: number
        y: number
        z: number
        w: number

        constructor(x?: number, y?: number, z?: number, w?: number)

        set(x: number, y: number, z: number, w: number): void
        toString(): string
        toArray(): number[]
        setFromAxisAngle(axis: Vec3, angle: number): void
        toAxisAngle(targetAxis?: Vec3): any[]
        setFromVectors(u: Vec3, v: Vec3): void
        mult(q: Quaternion, target?: Quaternion): Quaternion
        inverse(target?: Quaternion): Quaternion
        conjugate(target?: Quaternion): Quaternion
        normalize(): void
        normalizeFast(): void
        vmult(v: Vec3, target?: Vec3): Vec3
        copy(source: Quaternion): Quaternion
        toEuler(target: Vec3, order?: string): void
        setFromEuler(
            x: number,
            y: number,
            z: number,
            order?: string
        ): Quaternion
        clone(): Quaternion
    }

    export class Transform {
        static pointToLocalFrame(
            position: Vec3,
            quaternion: Quaternion,
            worldPoint: Vec3,
            result?: Vec3
        ): Vec3
        static pointToWorldFrame(
            position: Vec3,
            quaternion: Quaternion,
            localPoint: Vec3,
            result?: Vec3
        ): Vec3

        position: Vec3
        quaternion: Quaternion

        vectorToWorldFrame(localVector: Vec3, result?: Vec3): Vec3
        vectorToLocalFrame(
            position: Vec3,
            quaternion: Quaternion,
            worldVector: Vec3,
            result?: Vec3
        ): Vec3
    }

    export class Vec3 {
        static ZERO: Vec3

        x: number
        y: number
        z: number

        constructor(x?: number, y?: number, z?: number)

        cross(v: Vec3, target?: Vec3): Vec3
        set(x: number, y: number, z: number): Vec3
        setZero(): void
        vadd(v: Vec3, target?: Vec3): Vec3
        vsub(v: Vec3, target?: Vec3): Vec3
        crossmat(): Mat3
        normalize(): number
        unit(target?: Vec3): Vec3
        norm(): number
        norm2(): number
        distanceTo(p: Vec3): number
        mult(scalar: number, target?: Vec3): Vec3
        scale(scalar: number, target?: Vec3): Vec3
        dot(v: Vec3): number
        isZero(): boolean
        negate(target?: Vec3): Vec3
        tangents(t1: Vec3, t2: Vec3): void
        toString(): string
        toArray(): number[]
        copy(source: Vec3): Vec3
        lerp(v: Vec3, t: number, target?: Vec3): void
        almostEquals(v: Vec3, precision?: number): boolean
        almostZero(precision?: number): boolean
        isAntiparallelTo(v: Vec3, prescision?: number): boolean
        clone(): Vec3
    }

    export interface IBodyOptions {
        position?: Vec3
        velocity?: Vec3
        angularVelocity?: Vec3
        quaternion?: Quaternion
        mass?: number
        material?: Material
        type?: number
        linearDamping?: number
        angularDamping?: number
        allowSleep?: boolean
        sleepSpeedLimit?: number
        sleepTimeLimit?: number
        collisionFilterGroup?: number
        collisionFilterMask?: number
        fixedRotation?: boolean
        shape?: Shape
    }

    export class Body extends EventTarget {
        static DYNAMIC: number
        static STATIC: number
        static KINEMATIC: number
        static AWAKE: number
        static SLEEPY: number
        static SLEEPING: number
        static sleepyEvent: IEvent
        static sleepEvent: IEvent

        id: number
        world: World
        preStep: Function
        postStep: Function
        vlambda: Vec3
        collisionFilterGroup: number
        collisionFilterMask: number
        collisionResponse: boolean
        position: Vec3
        previousPosition: Vec3
        initPosition: Vec3
        velocity: Vec3
        initVelocity: Vec3
        force: Vec3
        mass: number
        invMass: number
        material: Material
        linearDamping: number
        type: number
        allowSleep: boolean
        sleepState: number
        sleepSpeedLimit: number
        sleepTimeLimit: number
        timeLastSleepy: number
        torque: Vec3
        quaternion: Quaternion
        initQuaternion: Quaternion
        angularVelocity: Vec3
        initAngularVelocity: Vec3
        interpolatedPosition: Vec3
        interpolatedQuaternion: Quaternion
        shapes: Shape[]
        shapeOffsets: any[]
        shapeOrientations: any[]
        inertia: Vec3
        invInertia: Vec3
        invInertiaWorld: Mat3
        invMassSolve: number
        invInertiaSolve: Vec3
        invInteriaWorldSolve: Mat3
        fixedRotation: boolean
        angularDamping: number
        aabb: AABB
        aabbNeedsUpdate: boolean
        wlambda: Vec3

        constructor(options?: IBodyOptions)

        wakeUp(): void
        sleep(): void
        sleepTick(time: number): void
        updateSolveMassProperties(): void
        pointToLocalFrame(worldPoint: Vec3, result?: Vec3): Vec3
        pointToWorldFrame(localPoint: Vec3, result?: Vec3): Vec3
        vectorToWorldFrame(localVector: Vec3, result?: Vec3): Vec3
        addShape(shape: Shape, offset?: Vec3, orientation?: Quaternion): void
        updateBoundingRadius(): void
        computeAABB(): void
        updateInertiaWorld(force: Vec3): void
        applyForce(force: Vec3, worldPoint: Vec3): void
        applyImpulse(impulse: Vec3, worldPoint: Vec3): void
        applyLocalForce(force: Vec3, localPoint: Vec3): void
        applyLocalImpulse(impulse: Vec3, localPoint: Vec3): void
        updateMassProperties(): void
        getVelocityAtWorldPoint(worldPoint: Vec3, result: Vec3): Vec3
    }

    export interface IRaycastVehicleOptions {
        chassisBody?: Body
        indexRightAxis?: number
        indexLeftAxis?: number
        indexUpAxis?: number
    }

    export interface IWheelInfoOptions {
        chassisConnectionPointLocal?: Vec3
        chassisConnectionPointWorld?: Vec3
        directionLocal?: Vec3
        directionWorld?: Vec3
        axleLocal?: Vec3
        axleWorld?: Vec3
        suspensionRestLength?: number
        suspensionMaxLength?: number
        radius?: number
        suspensionStiffness?: number
        dampingCompression?: number
        dampingRelaxation?: number
        frictionSlip?: number
        steering?: number
        rotation?: number
        deltaRotation?: number
        rollInfluence?: number
        maxSuspensionForce?: number
        isFronmtWheel?: boolean
        clippedInvContactDotSuspension?: number
        suspensionRelativeVelocity?: number
        suspensionForce?: number
        skidInfo?: number
        suspensionLength?: number
        maxSuspensionTravel?: number
        useCustomSlidingRotationalSpeed?: boolean
        customSlidingRotationalSpeed?: number

        position?: Vec3
        direction?: Vec3
        axis?: Vec3
        body?: Body
    }

    export class WheelInfo {
        maxSuspensionTravbel: number
        customSlidingRotationalSpeed: number
        useCustomSlidingRotationalSpeed: boolean
        sliding: boolean
        chassisConnectionPointLocal: Vec3
        chassisConnectionPointWorld: Vec3
        directionLocal: Vec3
        directionWorld: Vec3
        axleLocal: Vec3
        axleWorld: Vec3
        suspensionRestLength: number
        suspensionMaxLength: number
        radius: number
        suspensionStiffness: number
        dampingCompression: number
        dampingRelaxation: number
        frictionSlip: number
        steering: number
        rotation: number
        deltaRotation: number
        rollInfluence: number
        maxSuspensionForce: number
        engineForce: number
        brake: number
        isFrontWheel: boolean
        clippedInvContactDotSuspension: number
        suspensionRelativeVelocity: number
        suspensionForce: number
        skidInfo: number
        suspensionLength: number
        sideImpulse: number
        forwardImpulse: number
        raycastResult: RaycastResult
        worldTransform: Transform
        isInContact: boolean

        constructor(options?: IWheelInfoOptions)
    }

    export class RaycastVehicle {
        chassisBody: Body
        wheelInfos: IWheelInfoOptions[]
        sliding: boolean
        world: World
        iindexRightAxis: number
        indexForwardAxis: number
        indexUpAxis: number

        constructor(options?: IRaycastVehicleOptions)

        addWheel(options?: IWheelInfoOptions): void
        setSteeringValue(value: number, wheelIndex: number): void
        applyEngineForce(value: number, wheelIndex: number): void
        setBrake(brake: number, wheelIndex: number): void
        addToWorld(world: World): void
        getVehicleAxisWorld(axisIndex: number, result: Vec3): Vec3
        updateVehicle(timeStep: number): void
        updateSuspension(deltaTime: number): void
        removeFromWorld(world: World): void
        getWheelTransformWorld(wheelIndex: number): Transform
    }

    export interface IRigidVehicleOptions {
        chassisBody: Body
    }

    export class RigidVehicle {
        wheelBodies: Body[]
        coordinateSystem: Vec3
        chassisBody: Body
        constraints: Constraint[]
        wheelAxes: Vec3[]
        wheelForces: Vec3[]

        constructor(options?: IRigidVehicleOptions)

        addWheel(options?: IWheelInfoOptions): Body
        setSteeringValue(value: number, wheelIndex: number): void
        setMotorSpeed(value: number, wheelIndex: number): void
        disableMotor(wheelIndex: number): void
        setWheelForce(value: number, wheelIndex: number): void
        applyWheelForce(value: number, wheelIndex: number): void
        addToWorld(world: World): void
        removeFromWorld(world: World): void
        getWheelSpeed(wheelIndex: number): number
    }

    export class SPHSystem {
        particles: Particle[]
        density: number
        smoothingRadius: number
        speedOfSound: number
        viscosity: number
        eps: number
        pressures: number[]
        densities: number[]
        neighbors: number[]

        add(particle: Particle): void
        remove(particle: Particle): void
        getNeighbors(particle: Particle, neighbors: Particle[]): void
        update(): void
        w(r: number): number
        gradw(rVec: Vec3, resultVec: Vec3): void
        nablaw(r: number): number
    }

    export interface ISpringOptions {
        restLength?: number
        stiffness?: number
        damping?: number
        worldAnchorA?: Vec3
        worldAnchorB?: Vec3
        localAnchorA?: Vec3
        localAnchorB?: Vec3
    }

    export class Spring {
        restLength: number
        stffness: number
        damping: number
        bodyA: Body
        bodyB: Body
        localAnchorA: Vec3
        localAnchorB: Vec3

        constructor(options?: ISpringOptions)

        setWorldAnchorA(worldAnchorA: Vec3): void
        setWorldAnchorB(worldAnchorB: Vec3): void
        getWorldAnchorA(result: Vec3): void
        getWorldAnchorB(result: Vec3): void
        applyForce(): void
    }

    export class Box extends Shape {
        static calculateIntertia(
            halfExtents: Vec3,
            mass: number,
            target: Vec3
        ): void

        boundingSphereRadius: number
        collisionResponse: boolean
        halfExtents: Vec3
        convexPolyhedronRepresentation: ConvexPolyhedron

        constructor(halfExtents: Vec3)

        updateConvexPolyhedronRepresentation(): void
        calculateLocalInertia(mass: number, target?: Vec3): Vec3
        getSideNormals(sixTargetVectors: boolean, quat?: Quaternion): Vec3[]
        updateBoundingSphereRadius(): number
        volume(): number
        forEachWorldCorner(
            pos: Vec3,
            quat: Quaternion,
            callback: Function
        ): void
    }

    export class ConvexPolyhedron extends Shape {
        static computeNormal(va: Vec3, vb: Vec3, vc: Vec3, target: Vec3): void
        static project(
            hull: ConvexPolyhedron,
            axis: Vec3,
            pos: Vec3,
            quat: Quaternion,
            result: number[]
        ): void

        vertices: Vec3[]
        worldVertices: Vec3[]
        worldVerticesNeedsUpdate: boolean
        faces: number[][]
        faceNormals: Vec3[]
        uniqueEdges: Vec3[]

        constructor(points?: Vec3[], faces?: number[][])

        computeEdges(): void
        computeNormals(): void
        getFaceNormal(i: number, target: Vec3): Vec3
        clipAgainstHull(
            posA: Vec3,
            quatA: Quaternion,
            hullB: Vec3,
            quatB: Quaternion,
            separatingNormal: Vec3,
            minDist: number,
            maxDist: number,
            result: any[]
        ): void
        findSaparatingAxis(
            hullB: ConvexPolyhedron,
            posA: Vec3,
            quatA: Quaternion,
            posB: Vec3,
            quatB: Quaternion,
            target: Vec3,
            faceListA: any[],
            faceListB: any[]
        ): boolean
        testSepAxis(
            axis: Vec3,
            hullB: ConvexPolyhedron,
            posA: Vec3,
            quatA: Quaternion,
            posB: Vec3,
            quatB: Quaternion
        ): number
        getPlaneConstantOfFace(face_i: number): number
        clipFaceAgainstHull(
            separatingNormal: Vec3,
            posA: Vec3,
            quatA: Quaternion,
            worldVertsB1: Vec3[],
            minDist: number,
            maxDist: number,
            result: any[]
        ): void
        clipFaceAgainstPlane(
            inVertices: Vec3[],
            outVertices: Vec3[],
            planeNormal: Vec3,
            planeConstant: number
        ): Vec3
        computeWorldVertices(position: Vec3, quat: Quaternion): void
        computeLocalAABB(aabbmin: Vec3, aabbmax: Vec3): void
        computeWorldFaceNormals(quat: Quaternion): void
        calculateWorldAABB(
            pos: Vec3,
            quat: Quaternion,
            min: Vec3,
            max: Vec3
        ): void
        getAveragePointLocal(target: Vec3): Vec3
        transformAllPoints(offset: Vec3, quat: Quaternion): void
        pointIsInside(p: Vec3): boolean
    }

    export class Cylinder extends Shape {
        constructor(
            radiusTop: number,
            radiusBottom: number,
            height: number,
            numSegments: number
        )
    }

    export interface IHightfield {
        minValue?: number
        maxValue?: number
        elementSize: number
    }

    export class Heightfield extends Shape {
        data: number[][]
        maxValue: number
        minValue: number
        elementSize: number
        cacheEnabled: boolean
        pillarConvex: ConvexPolyhedron
        pillarOffset: Vec3
        type: number

        constructor(data: number[], options?: IHightfield)

        update(): void
        updateMinValue(): void
        updateMaxValue(): void
        setHeightValueAtIndex(xi: number, yi: number, value: number): void
        getRectMinMax(
            iMinX: number,
            iMinY: number,
            iMaxX: number,
            iMaxY: number,
            result: any[]
        ): void
        getIndexOfPosition(
            x: number,
            y: number,
            result: any[],
            clamp: boolean
        ): boolean
        getConvexTrianglePillar(
            xi: number,
            yi: number,
            getUpperTriangle: boolean
        ): void
    }

    export class Particle extends Shape {}

    export class Plane extends Shape {
        worldNormal: Vec3
        worldNormalNeedsUpdate: boolean
        boundingSphereRadius: number

        computeWorldNormal(quat: Quaternion): void
        calculateWorldAABB(
            pos: Vec3,
            quat: Quaternion,
            min: number,
            max: number
        ): void
    }

    export class Trimesh extends Shape {
        vertices: number[]
        indices: number[]
        scale: Vec3

        constructor(vertices: number[], indices: number[])

        updateTree(): void
        getTrianglesInAABB(aabb: AABB, result: []): []
        setScale(scale: Vec3): void
        updateNormals(): void
        updateEdges(): void
        getEdgeVertex(
            edgeIndex: number,
            firstOrSecond: number,
            vertexStore: Vec3
        ): void
        getEdgeVector(edgeIndex: number, vectorStore: Vec3): void
        static computeNormal(va: Vec3, vb: Vec3, vc: Vec3, target: Vec3): void
        getVertex(i: number, out: Vec3): Vec3
        getWorldVertex(i: number, pos: Vec3, quat: Quaternion, out: Vec3): Vec3
        getTriangleVertices(i: number, a: Vec3, b: Vec3, c: Vec3): void
        getNormal(i: number, target: Vec3): Vec3
        calculateLocalInertia(mass: number, target: Vec3): Vec3
        computeLocalAABB(aabb: Vec3): void
        updateAABB(): void
        updateBoundingSphereRadius(): number
        calculateWorldAABB(
            pos: Vec3,
            quat: Quaternion,
            min: number,
            max: number
        ): void
        volume(): number
        createTorus(
            radius: number,
            tube: number,
            radialSegments: number,
            tubularSegments: number,
            arc: number
        ): Trimesh
    }

    export class Shape {
        static types: {
            SPHERE: number
            PLANE: number
            BOX: number
            COMPOUND: number
            CONVEXPOLYHEDRON: number
            HEIGHTFIELD: number
            PARTICLE: number
            CYLINDER: number
            TRIMESH: number
        }

        type: number
        boundingSphereRadius: number
        collisionResponse: boolean
        geometryId: number

        updateBoundingSphereRadius(): number
        volume(): number
        calculateLocalInertia(mass: number, target: Vec3): Vec3
    }

    export class Sphere extends Shape {
        radius: number

        constructor(radius: number)
    }

    export class GSSolver extends Solver {
        iterations: number
        tolerance: number

        solve(dy: number, world: World): number
    }

    export class Solver {
        iterations: number
        equations: Equation[]

        solve(dy: number, world: World): number
        addEquation(eq: Equation): void
        removeEquation(eq: Equation): void
        removeAllEquations(): void
    }

    export class SplitSolver extends Solver {
        subsolver: Solver

        constructor(subsolver: Solver)

        solve(dy: number, world: World): number
    }

    export class EventTarget {
        addEventListener(type: string, listener: Function): EventTarget
        hasEventListener(type: string, listener: Function): boolean
        removeEventListener(type: string, listener: Function): EventTarget
        dispatchEvent(event: IEvent): IEvent
    }

    export class Pool {
        objects: any[]
        type: any[]

        release(): any
        get(): any
        constructObject(): any
    }

    export class TupleDictionary {
        data: {
            keys: any[]
        }

        get(i: number, j: number): number
        set(i: number, j: number, value: number): void
        reset(): void
    }

    export class Utils {
        static defaults(options?: any, defaults?: any): any
    }

    export class Vec3Pool extends Pool {
        type: any

        constructObject(): Vec3
    }

    export class NarrowPhase {
        contactPointPool: Pool[]
        v3pool: Vec3Pool
    }

    export class World extends EventTarget {
        iterations: number
        dt: number
        allowSleep: boolean
        contacts: ContactEquation[]
        frictionEquations: FrictionEquation[]
        quatNormalizeSkip: number
        quatNormalizeFast: boolean
        time: number
        stepnumber: number
        default_dt: number
        nextId: number
        gravity: Vec3
        broadphase: NaiveBroadphase
        bodies: Body[]
        solver: Solver
        constraints: Constraint[]
        narrowPhase: NarrowPhase
        collisionMatrix: ArrayCollisionMatrix
        collisionMatrixPrevious: ArrayCollisionMatrix
        materials: Material[]
        contactmaterials: ContactMaterial[]
        contactMaterialTable: TupleDictionary
        defaultMaterial: Material
        defaultContactMaterial: ContactMaterial
        doProfiling: boolean
        profile: {
            solve: number
            makeContactConstraints: number
            broadphaser: number
            integrate: number
            narrowphase: number
        }
        subsystems: any[]
        addBodyEvent: IBodyEvent
        removeBodyEvent: IBodyEvent

        getContactMaterial(m1: Material, m2: Material): ContactMaterial
        numObjects(): number
        collisionMatrixTick(): void
        addBody(body: Body): void
        addConstraint(c: Constraint): void
        removeConstraint(c: Constraint): void
        rayTest(from: Vec3, to: Vec3, result: RaycastResult): void
        remove(body: Body): void
        addMaterial(m: Material): void
        addContactMaterial(cmat: ContactMaterial): void
        step(
            dy: number,
            timeSinceLastCalled?: number,
            maxSubSteps?: number
        ): void
    }

    export interface IEvent {
        type: string
    }

    export interface IBodyEvent extends IEvent {
        body: Body
    }

    export interface ICollisionEvent extends IBodyEvent {
        contact: any
        target: any
    }
}

declare module 'cannon' {
    export = CANNON
}

./src/client/tsconfig.json

Update the compiler options paths to point to the new cannon.js typescript definition file.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
{
    "compilerOptions": {
        "moduleResolution": "node",
        "strict": true,
        "paths": {
            "three/examples/jsm/libs/dat.gui.module": [
                "../../node_modules/@types/dat.gui"
            ],
            "three/examples/jsm/libs/tween.module.min": ["../typings/tween.js"],
            "cannon": ["../typings/cannon"]
        }
    },
    "include": ["**/*.ts"]
}

Final Scripts

./src/client/client.ts

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import * as THREE from 'three'
import { OrbitControls } from 'three/examples/jsm/controls/OrbitControls'
import Stats from 'three/examples/jsm/libs/stats.module'
import { GUI } from 'three/examples/jsm/libs/dat.gui.module'
import * as CANNON from 'cannon'

const scene = new THREE.Scene()
scene.add(new THREE.AxesHelper(5))

const light1 = new THREE.SpotLight()
light1.position.set(2.5, 5, 5)
light1.angle = Math.PI / 4
light1.penumbra = 0.5
light1.castShadow = true
light1.shadow.mapSize.width = 1024
light1.shadow.mapSize.height = 1024
light1.shadow.camera.near = 0.5
light1.shadow.camera.far = 20
scene.add(light1)

const light2 = new THREE.SpotLight()
light2.position.set(-2.5, 5, 5)
light2.angle = Math.PI / 4
light2.penumbra = 0.5
light2.castShadow = true
light2.shadow.mapSize.width = 1024
light2.shadow.mapSize.height = 1024
light2.shadow.camera.near = 0.5
light2.shadow.camera.far = 20
scene.add(light2)

const camera = new THREE.PerspectiveCamera(
    75,
    window.innerWidth / window.innerHeight,
    0.1,
    1000
)
camera.position.set(0, 2, 4)

const renderer = new THREE.WebGLRenderer()
renderer.setSize(window.innerWidth, window.innerHeight)
renderer.shadowMap.enabled = true
document.body.appendChild(renderer.domElement)

const controls = new OrbitControls(camera, renderer.domElement)
controls.enableDamping = true
controls.target.y = 0.5

const world = new CANNON.World()
world.gravity.set(0, -9.82, 0)
//world.broadphase = new CANNON.NaiveBroadphase() //
//world.solver.iterations = 10
//world.allowSleep = true

const normalMaterial = new THREE.MeshNormalMaterial()
const phongMaterial = new THREE.MeshPhongMaterial()

const cubeGeometry = new THREE.BoxGeometry(1, 1, 1)
const cubeMesh = new THREE.Mesh(cubeGeometry, normalMaterial)
cubeMesh.position.x = -3
cubeMesh.position.y = 3
cubeMesh.castShadow = true
scene.add(cubeMesh)
const cubeShape = new CANNON.Box(new CANNON.Vec3(0.5, 0.5, 0.5))
const cubeBody = new CANNON.Body({ mass: 1 })
cubeBody.addShape(cubeShape)
cubeBody.position.x = cubeMesh.position.x
cubeBody.position.y = cubeMesh.position.y
cubeBody.position.z = cubeMesh.position.z
world.addBody(cubeBody)

const sphereGeometry = new THREE.SphereGeometry()
const sphereMesh = new THREE.Mesh(sphereGeometry, normalMaterial)
sphereMesh.position.x = -1
sphereMesh.position.y = 3
sphereMesh.castShadow = true
scene.add(sphereMesh)
const sphereShape = new CANNON.Sphere(1)
const sphereBody = new CANNON.Body({ mass: 1 })
sphereBody.addShape(sphereShape)
sphereBody.position.x = sphereMesh.position.x
sphereBody.position.y = sphereMesh.position.y
sphereBody.position.z = sphereMesh.position.z
world.addBody(sphereBody)

const icosahedronGeometry =
    new THREE.IcosahedronGeometry(1, 0)
const icosahedronMesh = new THREE.Mesh(
    icosahedronGeometry,
    normalMaterial
)
icosahedronMesh.position.x = 1
icosahedronMesh.position.y = 3
icosahedronMesh.castShadow = true
scene.add(icosahedronMesh)
const position = icosahedronMesh.geometry.attributes.position.array
const icosahedronPoints: CANNON.Vec3[] = []
for (let i = 0; i < position.length; i += 3) {
    icosahedronPoints.push(
        new CANNON.Vec3(position[i], position[i + 1], position[i + 2])
    )
}
const icosahedronFaces: number[][] = []
for (let i = 0; i < position.length / 3; i += 3) {
    icosahedronFaces.push([i, i + 1, i + 2])
}
const icosahedronShape = new CANNON.ConvexPolyhedron(
    icosahedronPoints,
    icosahedronFaces
)
const icosahedronBody = new CANNON.Body({ mass: 1 })
icosahedronBody.addShape(icosahedronShape)
icosahedronBody.position.x = icosahedronMesh.position.x
icosahedronBody.position.y = icosahedronMesh.position.y
icosahedronBody.position.z = icosahedronMesh.position.z
world.addBody(icosahedronBody)

const torusKnotGeometry = new THREE.TorusKnotGeometry()
const torusKnotMesh = new THREE.Mesh(
    torusKnotGeometry,
    normalMaterial
)
torusKnotMesh.position.x = 4
torusKnotMesh.position.y = 3
torusKnotMesh.castShadow = true
scene.add(torusKnotMesh)
// position = torusKnotMesh.geometry.attributes.position.array
// const torusKnotPoints: CANNON.Vec3[] = []
// for (let i = 0; i < position.length; i += 3) {
//     torusKnotPoints.push(new CANNON.Vec3(position[i], position[i + 1], position[i + 2]));
// }
// const torusKnotFaces: number[][] = []
// for (let i = 0; i < position.length / 3; i += 3) {
//     torusKnotFaces.push([i, i + 1, i + 2])
// }
// const torusKnotShape = new CANNON.ConvexPolyhedron(torusKnotPoints, torusKnotFaces)
const torusKnotShape = CreateTrimesh(torusKnotMesh.geometry)
const torusKnotBody = new CANNON.Body({ mass: 1 })
torusKnotBody.addShape(torusKnotShape)
torusKnotBody.position.x = torusKnotMesh.position.x
torusKnotBody.position.y = torusKnotMesh.position.y
torusKnotBody.position.z = torusKnotMesh.position.z
world.addBody(torusKnotBody)

function CreateTrimesh(geometry: THREE.BufferGeometry) {
    const vertices = (geometry as THREE.BufferGeometry).attributes.position
        .array
    const indices = Object.keys(vertices).map(Number)
    return new CANNON.Trimesh(vertices as [], indices)
}

const planeGeometry = new THREE.PlaneGeometry(25, 25)
const planeMesh = new THREE.Mesh(planeGeometry, phongMaterial)
planeMesh.rotateX(-Math.PI / 2)
planeMesh.receiveShadow = true
scene.add(planeMesh)
const planeShape = new CANNON.Plane()
const planeBody = new CANNON.Body({ mass: 0 })
planeBody.addShape(planeShape)
planeBody.quaternion.setFromAxisAngle(new CANNON.Vec3(1, 0, 0), -Math.PI / 2)
world.addBody(planeBody)

window.addEventListener('resize', onWindowResize, false)
function onWindowResize() {
    camera.aspect = window.innerWidth / window.innerHeight
    camera.updateProjectionMatrix()
    renderer.setSize(window.innerWidth, window.innerHeight)
    render()
}

const stats = Stats()
document.body.appendChild(stats.dom)

const gui = new GUI()
const physicsFolder = gui.addFolder('Physics')
physicsFolder.add(world.gravity, 'x', -10.0, 10.0, 0.1)
physicsFolder.add(world.gravity, 'y', -10.0, 10.0, 0.1)
physicsFolder.add(world.gravity, 'z', -10.0, 10.0, 0.1)
physicsFolder.open()

const clock = new THREE.Clock()
let delta

function animate() {
    requestAnimationFrame(animate)

    controls.update()

    delta = clock.getDelta()
    if (delta > 0.1) delta = 0.1
    world.step(delta)

    // Copy coordinates from Cannon.js to Three.js
    cubeMesh.position.set(
        cubeBody.position.x,
        cubeBody.position.y,
        cubeBody.position.z
    )
    cubeMesh.quaternion.set(
        cubeBody.quaternion.x,
        cubeBody.quaternion.y,
        cubeBody.quaternion.z,
        cubeBody.quaternion.w
    )
    sphereMesh.position.set(
        sphereBody.position.x,
        sphereBody.position.y,
        sphereBody.position.z
    )
    sphereMesh.quaternion.set(
        sphereBody.quaternion.x,
        sphereBody.quaternion.y,
        sphereBody.quaternion.z,
        sphereBody.quaternion.w
    )
    icosahedronMesh.position.set(
        icosahedronBody.position.x,
        icosahedronBody.position.y,
        icosahedronBody.position.z
    )
    icosahedronMesh.quaternion.set(
        icosahedronBody.quaternion.x,
        icosahedronBody.quaternion.y,
        icosahedronBody.quaternion.z,
        icosahedronBody.quaternion.w
    )
    torusKnotMesh.position.set(
        torusKnotBody.position.x,
        torusKnotBody.position.y,
        torusKnotBody.position.z
    )
    torusKnotMesh.quaternion.set(
        torusKnotBody.quaternion.x,
        torusKnotBody.quaternion.y,
        torusKnotBody.quaternion.z,
        torusKnotBody.quaternion.w
    )

    render()

    stats.update()
}

function render() {
    renderer.render(scene, camera)
}

animate()

Cannon.js GitHub

Cannon.js Parameter Tweaking

International System of Units